Semantics 1, WiSe 2014/15 (Sailer): Difference between revisions

From Lexical Resource Semantics
Jump to navigation Jump to search
 
(18 intermediate revisions by one other user not shown)
Line 7: Line 7:
Register for the olat course at https://olat.server.uni-frankfurt.de/olat/url/RepositoryEntry/2563833857.
Register for the olat course at https://olat.server.uni-frankfurt.de/olat/url/RepositoryEntry/2563833857.


== Material for week 6: Meeting of November 17, 2014 ==
Practice material:
* [[Semantics_1,_WiSe_2014/15:_Mock_exam| Mock exam]] with master solutions for WiSe 2014/15
* Master solution for the first assignment sheet
* Master solution for the second assignment sheet.
 
== Material for week 6: Meeting of November 18, 2014 ==
 
Work through the material for week 6. Hand in your solution to the '''homework task''' at the meeting of November 25 (this will count as "proof of attendance" for the meeting of week 6).


=== Input ===
=== Input ===
Line 13: Line 20:
Watch the following video on logical determiners:
Watch the following video on logical determiners:


<mediaplayer>http://youtu.be/b0iLejXP9C8</mediaplayer>
<embedvideo service="youtube" dimensions="400">http://youtu.be/5PRL23XcaFY</embedvideo>
<!-- old video with less optimal audio: http://youtu.be/b0iLejXP9C8 -->


=== Tasks ===
=== Tasks ===
Line 48: Line 56:
|| In restricted quantifier notation, the "complete" semantic representation of the noun phrase (NP) appears in the restrictor (-> square brackets).
|| In restricted quantifier notation, the "complete" semantic representation of the noun phrase (NP) appears in the restrictor (-> square brackets).
+ &exist;''x'' (('''montague<sub>1</sub>'''(''x'') &and; '''at-party<sub>1</sub>'''(''x'')) : '''fall-in-love-with<sub>2</sub>'''(''x'','''juliet'''))
+ &exist;''x'' (('''montague<sub>1</sub>'''(''x'') &and; '''at-party<sub>1</sub>'''(''x'')) : '''fall-in-love-with<sub>2</sub>'''(''x'','''juliet'''))
- &exist;''x'' (('''montague<sub>1</sub>'''(''x'') &and; '''at-party<sub>1</sub>'''(''x'')) : '''fall-in-love-with<sub>2</sub>'''(''x'','''juliet'''))
- &exist;''x'' ('''montague<sub>1</sub>'''(''x'') : ('''at-party<sub>1</sub>'''(''x'') &and; '''fall-in-love-with<sub>2</sub>'''(''x'','''juliet'''))
|| In restricted quantifier notation, the semantic representation of the noun phrase (NP) appears in the restrictor.
|| In restricted quantifier notation, the semantic representation of the noun phrase (NP) appears in the restrictor.
- &exist;''x'' (('''montague<sub>1</sub>'''(''x'') &and; '''fall-in-love-with<sub>2</sub>'''(''x'','''juliet''')) : '''at-party<sub>1</sub>'''(''x''))
- &exist;''x'' (('''montague<sub>1</sub>'''(''x'') &and; '''fall-in-love-with<sub>2</sub>'''(''x'','''juliet''')) : '''at-party<sub>1</sub>'''(''x''))
Line 60: Line 68:
{Mark all the cells in the table that stand for a true statement.
{Mark all the cells in the table that stand for a true statement.
|type="[]"}
|type="[]"}
| '''montague<sub>1</sub>'''(''y'') <span style="color:white">zwisch</span>| '''love<sub>2</sub>'''('''tybalt''',''y'')
| '''montague<sub>1</sub>'''(''y'') <span style="color:white">zwisch</span>| '''love<sub>2</sub>'''('''tybalt''',''y'')<span style="color:white">zwisch</span>
+- ''Romeo''
+- ''Romeo''
+- ''Mercutio''
+- ''Mercutio''
Line 69: Line 77:
</quiz>
</quiz>


=== Homework task for the meeting of November 24 ===
Given this table, is the overall formula true or false? (Give a reason for your answer.)
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
Check your solutions here:
<div class="mw-collapsible-content">
The formula is false, because there is no individual in our model for which both the restrictor and the scope are true.
</div>
</div>
 
 
 
'''Task 4''' Variable assignment function<br>
Start with the following variable assigment function ''g'':
''g(u) = Romeo, g(v) = Juliet, g(w) = Romeo, g(x) = Laurence, g(y) = Mercutio, g(z) = Juliet''
 
Provide the changed variable assignment function ''g''[''v/Paris''].
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
Check your solutions here:
<div class="mw-collapsible-content">
''g''[''v/Paris'']''(u)'' = ''g(u)'' = ''Romeo''<br>''g''[''v/Paris'']''(v)'' = ''Paris''<br>''g''[''v/Paris'']''(w)'' = ''g(w)'' = ''Romeo''<br>''g''[''v/Paris'']''(x)'' = ''g(x)'' = ''Laurence''<br>''g''[''v/Paris'']''(y)'' = ''g(y)'' = ''Mercutio''<br>''g''[''v/Paris'']''(z)'' = ''g(z)'' = ''Juliet''
</div>
</div>
 
=== Homework task for the meeting of November 25 ===


In the following sentences,  
In the following sentences,  
Line 79: Line 110:
<u>''Example:''</u>
<u>''Example:''</u>
''Laurence married Romeo to a Capulet.''
''Laurence married Romeo to a Capulet.''
# determiner: ''every''<br>restrictor: ''Capulet''<br>scope: ''Laurence married Romeo to x''
# determiner: ''a''<br>restrictor: ''Capulet''<br>scope: ''Laurence married Romeo to x''
# paraphrase: For every ''x'' such that ''x'' is a Capulet, Laurence married Romeo to ''x''.
# paraphrase: For some ''x'' such that ''x'' is a Capulet, Laurence married Romeo to ''x''.
# formula: &forall; ''x'' ('''capulet<sub>1</sub>'''(''x'') : '''marry-to'''('''laurence''', '''romeo''', ''x''))
# formula: &exist; ''x'' ('''capulet<sub>1</sub>'''(''x'') : '''marry-to'''('''laurence''', '''romeo''', ''x''))
# true or false? The formula is true in the context of our play because Juliet is a Capulet and Laurence marries Romeo to her. Thus, we find an individual for which both the restrictor and the scope are true.
# true or false? The formula is true in the context of our play because Juliet is a Capulet and Laurence marries Romeo to her. Thus, we find an individual for which both the restrictor and the scope are true.



Latest revision as of 18:20, 3 April 2016

Material for Manfred Sailer's seminar

Semantics 1, winter term 2014/15, Goethe University, Frankfurt a.M.

General information

You can get 2 CPs for the Medienkompetenzzertifikat in this class.

Register for the olat course at https://olat.server.uni-frankfurt.de/olat/url/RepositoryEntry/2563833857.

Practice material:

  • Mock exam with master solutions for WiSe 2014/15
  • Master solution for the first assignment sheet
  • Master solution for the second assignment sheet.

Material for week 6: Meeting of November 18, 2014

Work through the material for week 6. Hand in your solution to the homework task at the meeting of November 25 (this will count as "proof of attendance" for the meeting of week 6).

Input

Watch the following video on logical determiners:

Tasks

After having watched the video, work on the following tasks.

Task 1 Identify the determiners in the following sentence.

(a) Juliet talked to some stranger at the party.

(b) Every Capulet is an enemy to some Montague.

(c) Many people in Verona are not happy about the Capulet-Montague feud.

Check your solutions here:

(a) some

(b) every, some

(c) many


Task 2 Identify the formula that corresponds to the translation of the sentence.

Some Montague who was at the party fell in love with Juliet.

x (montague1(x) : (at-party1(x) ∧ fall-in-love-with2(x,juliet)))
x ((montague1(x) ∧ at-party1(x)) : fall-in-love-with2(x,juliet))
x (montague1(x) : (at-party1(x) ∧ fall-in-love-with2(x,juliet))
x ((montague1(x) ∧ fall-in-love-with2(x,juliet)) : at-party1(x))


Task 3 The sentence: Some Tybalt loved some Montague. is translated into the formula
∃ y (montague1(y) : love2(tybalt,y).

Mark all the cells in the table that stand for a true statement.

montague1(y) zwisch love2(tybalt,y)zwisch
Romeo
Mercutio
Juliet
Tybalt
Laurence
Paris


Given this table, is the overall formula true or false? (Give a reason for your answer.)

Check your solutions here:

The formula is false, because there is no individual in our model for which both the restrictor and the scope are true.


Task 4 Variable assignment function
Start with the following variable assigment function g: g(u) = Romeo, g(v) = Juliet, g(w) = Romeo, g(x) = Laurence, g(y) = Mercutio, g(z) = Juliet

Provide the changed variable assignment function g[v/Paris].

Check your solutions here:

g[v/Paris](u) = g(u) = Romeo
g[v/Paris](v) = Paris
g[v/Paris](w) = g(w) = Romeo
g[v/Paris](x) = g(x) = Laurence
g[v/Paris](y) = g(y) = Mercutio
g[v/Paris](z) = g(z) = Juliet

Homework task for the meeting of November 25

In the following sentences,

  1. identify the determiner, the restrictor, and the scope,
  2. provide the paraphrase,
  3. translate the sentences into formulae,
  4. indicate for each formula whether it is true or false.

Example: Laurence married Romeo to a Capulet.

  1. determiner: a
    restrictor: Capulet
    scope: Laurence married Romeo to x
  2. paraphrase: For some x such that x is a Capulet, Laurence married Romeo to x.
  3. formula: ∃ x (capulet1(x) : marry-to(laurence, romeo, x))
  4. true or false? The formula is true in the context of our play because Juliet is a Capulet and Laurence marries Romeo to her. Thus, we find an individual for which both the restrictor and the scope are true.

Work on the following sentences:

(a) Romeo talked to a friar.

(b) Juliet killed every Capulet.