Exercise Quantifiers: Difference between revisions
Monique Lanz (talk | contribs) |
|||
Line 84: | Line 84: | ||
</div> | </div> | ||
</div> | </div> | ||
= More exercises on quantifiers = | = More exercises on quantifiers = |
Revision as of 14:26, 21 August 2015
Introduction to the topic
Input
Watch the following video on logical determiners:
<mediaplayer> http://youtu.be/5PRL23XcaFY</mediaplayer>
Exercises
After having watched the video, work on the following tasks.
Task 1 Identify the determiners in the following sentence.
(a) Juliet talked to some stranger at the party.
(b) Every Capulet is an enemy to some Montague.
(c) Many people in Verona are not happy about the Capulet-Montague feud.
Check your solutions here:
(a) some
(b) every, some
(c) many
Task 2 Identify the formula that corresponds to the translation of the sentence.
Task 3 The sentence: Some Tybalt loved some Montague. is translated into the formula
∃ y (montague1(y) : love2(tybalt,y).
Given this table, is the overall formula true or false? (Give a reason for your answer.)
Check your solutions here:
The formula is false, because there is no individual in our model for which both the restrictor and the scope are true.
Task 4 Variable assignment function
Start with the following variable assigment function g:
g(u) = Romeo, g(v) = Juliet, g(w) = Romeo, g(x) = Laurence, g(y) = Mercutio, g(z) = Juliet
Provide the changed variable assignment function g[v/Paris].
Check your solutions here:
g[v/Paris](u) = g(u) = Romeo
g[v/Paris](v) = Paris
g[v/Paris](w) = g(w) = Romeo
g[v/Paris](x) = g(x) = Laurence
g[v/Paris](y) = g(y) = Mercutio
g[v/Paris](z) = g(z) = Juliet
More exercises on quantifiers
The following material is an adapted form of material created by student participants of the project e-Learning Resources for Semantics (e-LRS).
Involved participants: AnKa, Katharina, Lara
Restricted Quantifiers
Find the right formula for the sentence below.
Different types of Quantifiers
Which type(s) of quantifiers does the sentence below have?
2. Write down the logical formula(e) that correspond to the sentence Ramon signs every sculpture he makes.
Check your solutions here
Sentence: Ramon signs every sculpture he makes.
Universal Quantifier
∀x ((sculpture(x) ∧ make(ramon, x)) ⊃ sign(ramon, x))
Paraphrse: "For every thing x, if x is a sculpture and x is made by Ramon then x is signed by Ramon."
We use the name constant ramon for both the name (Ramon) and the personal pronoun he that referes to Ramon.
In restricted quantifier notation
∀x ((sculpture(x) ∧ make(ramon, x)) : sign(ramon, x))
Here, the N' is "sculpture he makes" and therefore its translation appears in the part before the colon.
Scopal Ambiguity
1. In which way is the following sentence ambiguous?
Everyone loves someone.
The following pictures may help you:
Check your solutions here:
When looking at the two pictures that try to help you, you can see two possible readings:
1. For every person there is, there is at least one other person who loves him / her.
2. There is one person that is loved by everyone else.
2. Write down the two possible logical forms.
Check your solutions here:
∀x (person(x) ⊃ ∃y (person(y) ∧ love(x,y)
Or, in restricted-quantifier notation: ∀x (person(x) : ∃y (person(y) : love(x,y)
2. There is one person that is loved by everyone:
∃y (person(y) ⊃ ∀x (person(x) ∧ love(x,y)
Or, in restricted-quantifier notation: ∀x (person(x) : ∃y (person(y) : love(x,y)