Glossary:Logical Quantifier: Difference between revisions
Jump to navigation
Jump to search
Line 15: | Line 15: | ||
== Related Terms == | == Related Terms == | ||
* [[Glossary:Existential Quantifier | Existential Quantifier]] | * [[Glossary:Existential Quantifier | Existential Quantifier]] | ||
* Logical Form | * [[Glossary:Logical Form | Logical Form]] | ||
* Logical | * [[Glossary:Logical Operator | Logical Operator (Propositional Connective)]] | ||
* Predicate Logic (First-order | * [[Glossary:Predicate logic| Predicate Logic (First-order Logic)]] | ||
* [[Glossary:Quantifiers | Quantifier]] | * [[Glossary:Quantifiers | Quantifier]] | ||
* [[Glossary:Universal Quantifier| Universal Quantifier]] | * [[Glossary:Universal Quantifier| Universal Quantifier]] | ||
* Variable | * [[Glossary:Variable | Variable]] | ||
<hr /> | <hr /> | ||
Back to the [[Basic_Glossary|Basic Glossary]] | Back to the [[Basic_Glossary|Basic Glossary]] |
Revision as of 01:40, 24 June 2016
Logical Quantifier
BE /ˈlɒʤɪkəl ˈkwɒntɪfaɪə/, AE /ˈlɑ:ʤɪkl̩ ˈkwɑntɪˌfaɪər/
Definition
In predicate logic the two fundamental quantifiers are the logical quantifiers (also called generalized quantifiers), which are the universal quantifier and the existential quantifier.
Examples
- Universal quantifier: ∀ apple (Read as: for every apple, for all apples)
- Existential quantifier: ∃ apple (Read as: at least one apple exists)
References
Kearns, Kate. 2000. Semantics. Basingstoke: Macmillan.
Related Terms
- Existential Quantifier
- Logical Form
- Logical Operator (Propositional Connective)
- Predicate Logic (First-order Logic)
- Quantifier
- Universal Quantifier
- Variable
Back to the Basic Glossary